(PE2) Eliminating the Parameter#

In this lesson we are going to see how to use the technique of eliminating the parameter to find a Cartesian equation to describe a parametric curve.

Review Videos#


Example 1#

Eliminate the parameter to find a Cartesian equation of the parametric curve given by:

\[ x=t^2-2t\qquad \qquad y=t+1 \]

parametric1

Example 2#

Eliminate the parameter to find a Cartesian equation of the parametric curve given by:

\[ x=\cos t\qquad y=\sin t \quad \text{with} \quad 0\leq t\leq 2\pi \]

Example 3#

Eliminate the parameter to find a Cartesian equation of the parametric curve given by:

\[ x=\sin 2t\qquad y=\cos 2t \quad \text{with} \quad 0\leq t\leq 2\pi \]

Parametric Curve vs Cartesian#

\[ x=\cos t\qquad y=\sin t \quad \text{with} \quad 0\leq t\leq 2\pi \]
\[ x=\sin 2t\qquad y=\cos 2t \quad \text{with} \quad 0\leq t\leq 2\pi \]

Example 4#

Eliminate the parameter to find a Cartesian equation of the parametric curve given by:

\[ x=\sin t\qquad y=\sin^2 t \]

parametric2

Common Parametric Curves#

Circle

\[ x=h+r\cos t \qquad \quad y=k + r\sin t \qquad \text{with} \quad 0\leq t\leq 2\pi \]

Line Segment

\[ x=x_0+ t (x_1-x_0) \qquad \quad y=y_0+ t (y_1-y_0) \qquad \text{with} \quad 0\leq t\leq 1 \]